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ADDENDUM 

Generalized Bogolyubov transformation-bosonic case 

Fan Hong-yi 
CCAST (World Laboratory) PO Box 8730, Beijing, 100080, People’s Republic of China, 
and Department of Material Science and Engineering, China University of Science and 
Technology, Hefei, Anhui, People’s Republic of Chinat 

Received 4 February 1991 

Abstnet. The formalism of the generalized fermionic Bogolyubov transformation. pre- 
viously by Fan and VanderLinde, is extended to the bosonic case. The corresponding 
bosonic quasi-particle and quasi-vacuum state are derived; the bosonic generalized 
Bogolyubov operator is decomposed as a normal product form by the technique of 
integration within an ordered product (IWOP). 

1. Introduction 

In a previous work [l], by exploiting the newly developed technique of integration 
within ordered products (IWOP) [2] we extended the fermionic Bogolyubov transfor- 
mation (frequently used in dealing with pairing interactions of fermions) to allow for 

tion ‘coefficient’. In this addendum we generalize the formalism of [ 11 to the boson 
case. The boson Bogolyubov transformation has been used in quantum statistics [3] 
and the quantum theory of magnetism [4]; however, the corresponding unitary operator 
which can engender multimode Bogolyubov transformation has not yet received enough 
attention in the literature. Similar in spirit to the derivation in [l], in the following we 
shall derive the normally ordered expansion of the bosonic generalized Bogolyubov 
operator U( G) = ex&( a;G,aj - a:Gi.aj)} (i, j = 1 ,2 ,  . .. . , n), where we have adopted 
the Einstein convention (if an index is repeated in a term, summation over it from 1 
to n is implied) and G is a complex symmetric matrix of course. In section 2 we show 
that the operator U( G )  generates the Bogolyubov transformation whose ‘coefficient’ 
is a matrix. In section 3, the boson quasi-particle vacuum state is deduced. In section 
4, with the help of the IWOP technique and using the coherent state representation 
[SI we derive the normal product form of U ( G ) .  

bi!la!y roup!ir?g bet\yeen any (eve.) numbsr of fermions by csiI?g 1 m2trix !rEnsforml- 

2. Transformation properties of boson creator a: under U(C) 

Using the commutator result [a,, a:] = a,,, and the operator identity 

1 1 
2! 3! 

e A B e - A = B + [ A , B l + - [ A , [ A , B l l + - [ A , [ A , [ A ,  E]]]+ ... 
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we obtain 

U0:U-l = a~[c~sh(G'G)'~~l~~~a,[G(G~G)~''~ sinh(G'G)'/'],, (2.1) 

= a f [ c o ~ h ( G ' G ) ' / ~ ] ~ ~ +  aj[sinh(GG')1'2( G G t ) - ' / 2 G ] j j .  (2.2) 

As shown in [ 6 ] ,  an arbitrary non-singular matrix can always be decomposed as the 
product of  a unitary matrix and a Hermitian matrix. Then in a fashion analogous to 
the polar representation of complex numbers, we may in general write 

(3) - G = H e i F  

with H = Ht ,  F = F'. Since 6 = G, we also have - - -  
G = e i F H  GIG = GG' G G ~ G  = GG'G 

GGt = H 2  @ ~ = f i 2  - f i 2  e-iF - e - i F ~ 2 ,  (4) 

UaTU-' = af(cosh =,(e'' sinh (5.1) 

= aj(cosh fi),i+aj[(sinh H )  = a;'.  (5.2) 

Equation (2) can then be put into the form: 

It then follows that 

&U-' = aj(cosh H),,+ a:(.-;' sinh H), ,  

= n,(cosh H ) j j +  af(sinh f i  e-"),, = a : ,  

Note that (e-" sinh H )  is a symmetric matrix. 

3. Multimode boson quasi-particle vacuum state generated by U 

We now seek the boson quasi-particle vacuum state Ul6)= 116) annihilated by a;, where 
16) is the multi-boson vacuum state annihilated by a,, a$) = 0. For this purpose, we 
first establish an equation satisfied by 110) by allowing aI to operate on 116) 

a,#i)= uu-Ia ,u/ i j )  (7) 
which we then solve to get 116). As a result of (5) and ( 6 )  as well as LI'(G) = U(-G), 
we may express (7) as 

all\@ = U[a,(cosh H),( - aJ(e-'F sinh H)jj]16) 

= - Uaf(e-'F sinh H),,U-l Ul6) 

= -[a:(cosh fi e-iF sinh H),,+a,(sinh2 H),Jll6). (8) 

It then follows from (4) and (8) that 

a,116)= -af(e-" tanh H),,l l6) (9) 
which is the equation we need for 116) to obey. By noticing 

[a,,exp(-za,(e tanh H),a : ) ]  I t - i F  

= -a;(eCiF tanh H)ji exp(-fa:(e-iF tanh H)p ; )  (10) 

(11) 

we solve equation (9) to obtain 

116) = C exp[ -taT(e-'F tanb H)sajl16). 
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The normalization factor C can be derived by evaluating the norm 

1 = @ / I @ =  lC12(61 exp[ -fa,(tanh H e'F)vaj] exp[ -&:(e-" tanh H ) , ~ $ I ) .  (12) 

In order to put the anti-normally ordered exponential operators in (12) into normal 
product form so that the vacuum state expectation value can be readily obtained, we 
use the operator identity deduced in [7] 

e",',,*] e','*j'i = [ d e t ( l l - 4 ~ ~ ) ] - " ~  exp{a:[(1-4rU)-'~],a;) 
, ?  

x:exp[aj(~ -4~u);'a~-a:a,]: 

x exp{ai[(l -4m-'U]yaj) (13) 

where U and r are both n x n symmetric matrices, and 1 is the n x n unit matrix. As 
a result of employing (13), from (12) we obtain, up to a phase factor, 

c =[&t(sc& g p 2 ,  (14) 

4. Normally ordered expansion of U ( C )  

We now seek the normal product form of U( G). By introducing the overcompleteness 
relation of the boson coherent state 

where 15) is defined as 

Ii)- IzI, z 2 , .  . . , z.)=exp[ -iz:zi+zial]16)-exp[ -fli12+id+]16) 
we can rewrite U( G) as 

~li)= U exp(z,a:)u-'uIij) exp(-$Izi12) 

(16) 

= [det(sech exp{z,[aj(cosh filii  + aj(sinh H e")ji]) 

(17) 

la deriving (17) we have used (5) and (11). Using the Baker-Hausdorff formula and 
(10) we can decompose the first exponential in (17) as 

exp{. . .)= exp(zj(cosh H ) , a j )  exp(aj(sinh H eiF)jjzj) exp(:z,(sinh 2 H  eiF),zj). (18) 

Therefore, (17) becomes 

Uli)=[det(sech H))1'2exp[-f~zj~2+zj(sech H),aJ++z,(tanheLF)zj 

I T -iF xexp{ - p , ( e  tanh H),a:-f/zil21I6). 

(19) - p j ( e  I t -iF tanh H),a;]16). 
By virtue of (19) and the IWOP technique we can further express U ( G )  as 

U =  - U ( i ) ( i (  I d: 

= [det(sech H)]'/2 jy[d%] 

X:exp{-)zi)2+ r,(sech H),aj+zTa,+fz,(tanh H eiF),zj 

-fa:(e-iF tanh H),aj-a!aj):. 
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In terms of the integration formula [7,8] 

- . 
where A, B, C, D are aii square matrices of order n, B = B, C = C,, and the method 
of parttitioning of matrices for finding the inverse and the determinant of a matrix 

/ A  U\ 
d e t ( i  i ) = d e t A d e t ( D - C A - ' B )  

then equation (20) finally becomes 

-tanh H eiF U )  (;) 
U = [det(sech H)]'12 J" ?[$]:exp{-+(:,:*)( 1 0 

+(ri'sechI?,C) -a:aj-fa:(eCiF tanh H),aJ : (3 I 
=[det(sech H)]'12 exp[ -faT(e-" tanh H),al] 

x :exp[a:(sech fi -Il),a,]:exp[fa,(tanh H eiF),aj]. (23) 

By virtue of the formula 

:exp[a:(e" - ~ ) ~ a ~ ] : a , :  exp[a:(e-" -u),aj]: = (e-"),(a; (24) 

and A' e-iF = eCiFH2, one can check that the result (23) indeed generates the transfor- 
mations ( 5 )  and (6). As a direct application of (23), following Bogolyubov [3] and 
Tyablikov [4] we consider the Hamiltonian [9] 

= alL,a, +t(arM,a,! + aiM;a,) 

where L=L', M = f i .  In terms of (5) and (6) one can diagonalize X as X= 
E'o'+E'''aj'a:, where the energies E''' and the matrices H and F a r e  determined by 

(E"'8, -L$)(cosh f i ) ,  = -(sinh I? e-")),M? 

(E"'$+  L,)(sinh fi e-"), = (cosh A),M,, 
which can lead us to find the energy E o  

E")= -E"'(sinh2 HI,! .  

In summary, by combining and contrasting this work and the formalism of [l], we 
have developed the original Bogolyubov transformation to a new formalism in which 
the parameter is a matrix. The IWOP techniques for both boson and fermion systems 
have played an essential role in both [ l ]  and the present addendum. 
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Note added in pro05 Using IWOP, we can also directly perform the inlegration 

= [det sech AI'" exp[ja:(tanh A)ga:] 

X :exp[o:(sech A - l),a,]: exp[-ja,(tanh A),,oi] 

where A is a real symmetric matrix. e2"+l is positive definite, and I$)  is the n-mode coordinate eigenstate. 
inis is a speciai case of (2;). 1. 
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