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ADDENDUM

Generalized Bogolyubov transformation—bosonic case
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CCAST (World Laboratory) PQ Box 8730, Beijing, 100080, People’s Republic of China,
and Department of Material Science and Engineering, China University of Science and
Technology, Hefei, Anhui, People’s Republic of Chinat
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Abstract. The formalism of the generalized fermionic Bogolyubov transformation, pre-
viously by Fan and VanderLinde, is extended to the bosonic case. The corresponding
bosonic quasi-particle and quasi-vacuum state are derived; the bosonic generalized
Bogolyubov operator is decomposed as a normal product form by the technique of
integration within an ordered product (IWOP).

1. Introduction

In a previous work [1], by exploiting the newly developed technique of integration
within ordered products (IWOP) [2] we extended the fermionic Bogolyubov transfor-
mation (frequently used in dealing with pairing interactions of fermions) to allow for
binary coupling between any (even) number of fermions by using a matrix transforma-
tion ‘coefficient’. In this addendum we gencralize the formalism of [1] to the boson
case. The boson Bogolyubov transformation has been used in quantum statistics [3]
and the quantum theory of magnetism [4]; however, the corresponding unitary operator
which can engender multimode Bogolyubov transformation has not yet received enough
attention in the literature. Similar in spirit to the derivation in [1], in the following we
shall derive the normally ordered expansion of the bosonic generalized Bogolyubov
operator U(G) =exp{3(a:Gya;,— a]Gla)} (i,j=1,2,...., n), where we have adopted
the Einstein convention (if an index is repeated in a term, summation over it from 1
to n is implied) and G is a complex symmetric matrix of course. In section 2 we show
that the operator U{G) generates the Bogolyubov transformation whose ‘coefficient’
is a matrix. In section 3, the boson quasi-particle vacuum state is deduced. In section
4, with the help of the IWOP technique and using the coherent state representation
[5] we derive the normal product form of U(G).

2. Transformation properties of boson creator a] under U(G)
Using the commutator result [a;, a}] = §;, and the operator identity

e*Be " =B+[A, B]+  [A. L4, B]]+—[A (A, [A4, BI]]+... (1)
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we obtain
UaiU™" = aj[cosh(G'G)"/?);+ gL G(G'G) V2 sinh(G'GY',  (2.1)
= a;[cosh(G"G)"*); + q[sinh( GG "*(GG") ' *G)y.  (2.2)

As shown in [6], an arbitrary non-singular matrix can always be decomposed as the
product of a unitary matrix and a Hermitian matrix. Then in a fashion analogous to
the polar representation of complex numbers, we may in general write

G=He" (3)
with H= H', F=F". Since G = G, we also have
- A —— M
G=¢*H G'G=GG! GG'G=GG'G
. - . . 4
GG'= H*? G'G=H? H?e F=¢ FH?, @
Equation (2) can then be put into the form:
UalU™'=al(cosh A),+ aj(e“a sinh I:I)j,- {5.1)
=a,(cosh H); +a[(sinh H) e ], =a!". (5.2)

It then follows that
Ua,U™" = a;(cosh H);;+ aj(e”'" sinh H),
= a;(cosh H);+ al(sinh H ef”?)j,- =aq, (6)

Note that (¢ sinh H) is a symmetric matrix.

3. Multimode boson quasi-particle yacuum state generated by U/

We now seek the boson quasi-particle vacuum state U|0) E_J\ﬁ) annihilated by a!, where
|0y is the multi-boson vacuum state annihilated by a;, a,|0)=0. For this purpose, we
first establish an equation satisfied by ||0) by allowing @, to operate on ||0)

|0y = UU ™ q,U|D) (N

which we then solve to get ||0). As a result of (5) and (6) as well as U'(G) = U(-G),
we may express {7) as

a,||0) = Ul a;(cosh H);,— a}(e™'" sinh H);]|0)
=—Uaj(e”* sinh H),U™' U0}

= —[aj(cosh H ¢7'F sinh H ), + a;(sinh® H),]||0). (8)
It then follows from (4) and (8) that
/10y = —aj(e™'" tanh H),0) (9)

which is the equation we need for |0) to obey. By noticing
[a;, exp(—3aj(e”*F tanh H),a])]
=—aj(e”F tanh H); exp(—3aj(e™" tanh H)a}) (10)
we solve equation (9) to obtain
I0) = C exp[ —3aj(e”' tanh H);a]]|0). (1)
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The normalization factor C can be derived by evaluating the norm
1=(0}|0) = |C[X0| exp[ —3a;(tanh H ") ya;] expl —1aj(e™" tanh H);a[]|0). (12)

In order to put the anti-normally ordered exponential operators in (12) into normal
product form so that the vacuum state expectation value can be readily obtained, we
use the operator identity deduced in [7]

€T T = [det(1—407)]""* exp{al[(1-470) ' 7},al}
x:expla(1-470);'a,—ala;):
xexp{a,[(1-4or) 'ol,a;} (13)

where ¢ and r are both nxn symmetric matrices, and 1is the n X n unit matrix. As
a result of employing (13), from (12) we obtain, up to a phase factor,

C =ldet{sech H11V2 {14)
~ LMswiywwsas 2271 " AT

4. Normally ordered expansion of U(G)

We now seek the normal product form of U(G). By introducing the overcompleteness
relation of the boson coherent state

2= 2
JEIE><ZI=J I [M]:e?cp[—(z?“—af)(z,-—a,-)]:=1 (15)
w i T
where |Z) is defined as
|8)=|z,, 22, .., 2oy =exp[ =32}z, +z,a}]|0) = exp[ —3|2]* + 28" 1|0 (16)

we can rewrite U{G) as
U)z)= U exp(zal}U™ U[0) exp(—4z[")
= [det(sech H)]"? exp{z;[a/(cosh H);+a;(sinh H ¢");]}
x exp{ —4a; (e tanh H) a] —3z|*}|0). (17)

In deriving (17) we have used (5) and (11). Using the Baker-Hausdorff formula and
(10) we can decompose the first exponential in (17) as

exp{...}=exp(z:(cosh H);a}) exp(a;(sinh H ¢'"),z,} exp(iz{sinh 2H ¢'7);z).  (18)
Therefore, (17) becomes
U|z) = [det(sech H))"2 exp[ - |z|*+ z:(sech H),a] +1z.(tanh e'F)z

-iaj(e tanh H),a/1}0). (19)
By virtue of (19) and the IWOP technique we can further express U(G) as

U= J 9—? U|z)(2]

A?
a

r T A

=[det(sech H)}"/? J 1 I_ 'J
i T

xrexp{—|z|’ + z(sech H),a] + z¥a, +3z,(tanh H "),z

-{aj{e7'F tanh H) a] ~a;a;}:. (20)

(3]
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In terms of the integration formula {7, 8]

fe)onl a2 2)(2)ee ()]
[l D) oS ']

where A, B, C, D are all square matrices of order n, B= B, C= C,, and the method
of parttitioning of matrices for finding the inverse and the determinant of a matrix

(A B)*‘=( (A—BD7'C)Y! A"B(CA"‘B—D)‘)

C D D'C(BD'C-A)" (D-CA'B)!
(22)
d (4 B) det Adet(D—-CA™'B
et(c D) =det A det(D— )
then equation (20} finally becomes
d’z, —tanh H &'F 4
U =[det(sech H)]"’zj i [—z—] exp{ —i(3, f*)( amh e “) (z*)
i LT 1 0/ \z
+(a" sech A, &) (z_z*) ~ala;~3ial(e”'F tanh H),-ja}}:
={[det(sech H)]"? exp[ —ial(e”" tanh H),a]
x :explaf(sech H —1);a/]:exp[a;(tanh H e },a;]. (23)
By virtue of the formula
:explaj(e® —1);a,]:a,: expla)(e™* —1),a): = (e *),a (24)

and H? e 'F = ¢ '"H?, one can check that the result (23) indeed generates the transfor-
mations (§) and (6). As a direct application of (23), fellowing Bogolyubov [3] and
Tyablikov [4] we consider the Hamiltonian [9]

+
H= aILuaj+%(aTMjaJ + aiMBaj)

where L= L' M =M. In terms of _(5) and {6) one can diagonalize # as # =
E@+E%Pal"a!, where the energies E‘” and the matrices H and F are determined by

(E\"8, - L})(cosh H), = ~(sinh H &™), M3
(E'"8,+ Ly)(sinh A e7'F), = (cosh H);M;

which can lead us to find the energy E°
E'”=—E"Y(sinh® H),.

In summary, by combining and contrasting this work and the formalism of [1], we
have developed the original Bogolyubov transformation to a new formalism in which
the parameter is a matrix, The IWOP techniques for both boson and fermion systems
have played an essential role in both [1] and the present addendum.
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Note added in proof. Using TWOP, we can also directly perform the integration
‘( d"gle* §)(g?|(det e*)V/?
=[det sech A]'/2 exp[3a](tanh A),a}]

x :expla]{sech A—1),a,]: expl—3}a,(tanh A),a;]

where A is a real symmetric matrix, e** +1 is positive definite, and |§) is the n-mode coordinate eigenstate.
This is a special case of {23).
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