Generalized Bogolyubov transformation-bosonic case

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 243437
(http://iopscience.iop.org/0305-4470/24/14/031)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 11:06

Please note that terms and conditions apply.

ADDENDUM

Generalized Bogolyubov transformation-bosonic case

Fan Hong-yi
CCAST (World Laboratory) PO Box 8730 , Beijing, 100080 , People's Republic of China, and Department of Material Science and Engineering, China University of Science and Technology, Hefei, Anhui, People's Republic of China \dagger

Received 4 February 1991

Abstract

The formalism of the generalized fermionic Bogolyubov transformation, previously by Fan and VanderLinde, is extended to the bosonic case. The corresponding bosonic quasi-particle and quasi-vacuum state are derived; the bosonic generalized Bogolyubov operator is decomposed as a normal product form by the technique of integration within an ordered product (IWOP).

1. Introduction

In a previous work [1], by exploiting the newly developed technique of integration within ordered products (IWOP) [2] we extended the fermionic Bogolyubov transformation (frequently used in dealing with pairing interactions of fermions) to allow for binary coupling between any (even) number of fermions by using a matrix transformation 'coefficient'. In this addendum we generalize the formalism of [1] to the boson case. The boson Bogolyubov transformation has been used in quantum statistics [3] and the quantum theory of magnetism [4]; however, the corresponding unitary operator which can engender multimode Bogolyubov transformation has not yet received enough attention in the literature. Similar in spirit to the derivation in [1], in the following we shall derive the normally ordered expansion of the bosonic generalized Bogolyubov operator $U(G)=\exp \left\{\frac{1}{2}\left(a_{i} G_{i j} a_{j}-a_{i}^{\dagger} G_{i j}^{\dagger} a_{j}\right)\right\}(i, j=1,2, \ldots, n)$, where we have adopted the Einstein convention (if an index is repeated in a term, summation over it from 1 to n is implied) and G is a complex symmetric matrix of course. In section 2 we show that the operator $U(G)$ generates the Bogolyubov transformation whose 'coefficient' is a matrix. In section 3, the boson quasi-particle vacuum state is deduced. In section 4, with the help of the IWOP technique and using the coherent state representation [5] we derive the normal product form of $U(G)$.

2. Transformation properties of boson creator a_{i}^{\dagger} under $\boldsymbol{U}(\boldsymbol{G})$

Using the commutator result $\left[a_{i}, a_{j}^{\dagger}\right]=\delta_{i j}$, and the operator identity

$$
\begin{equation*}
\mathrm{e}^{A} B \mathrm{e}^{-A}=B+[A, B]+\frac{1}{2!}[A,[A, B]]+\frac{1}{3!}[A,[A,[A, B]]]+\ldots \tag{1}
\end{equation*}
$$

[^0]we obtain
\[

$$
\begin{align*}
U a_{i}^{\dagger} U^{-1} & =a_{j}^{\dagger}\left[\cosh \left(G^{\dagger} G\right)^{1 / 2}\right]_{j i}+a_{j}\left[G\left(G^{\dagger} G\right)^{-1 / 2} \sinh \left(G^{\dagger} G\right)^{1 / 2}\right]_{j i} \tag{2.1}\\
& =a_{j}^{\dagger}\left[\cosh \left(G^{\dagger} G\right)^{1 / 2}\right]_{j i}+a_{j}\left[\sinh \left(G G^{\dagger}\right)^{1 / 2}\left(G G^{\dagger}\right)^{-1 / 2} G\right]_{j j} \tag{2.2}
\end{align*}
$$
\]

As shown in [6], an arbitrary non-singular matrix can always be decomposed as the product of a unitary matrix and a Hermitian matrix. Then in a fashion analogous to the polar representation of complex numbers, we may in general write

$$
\begin{equation*}
G=H \mathrm{e}^{\mathrm{i} F} \tag{3}
\end{equation*}
$$

with $H=H^{\dagger}, F=F^{\dagger}$. Since $\tilde{G}=G$, we also have

$$
\begin{array}{lcc}
G=\mathrm{e}^{\mathrm{i} \tilde{F}} \tilde{H} & \widetilde{G^{\dagger} G}=G G^{\dagger} & \overparen{G G^{\dagger} G}=G G^{\dagger} G \\
G G^{\dagger}=H^{2} & G^{\dagger} G=\tilde{H}^{2} & \tilde{H}^{2} \mathrm{e}^{-\mathrm{i} F}=\mathrm{e}^{-\mathrm{i} F} H^{2} \tag{4}
\end{array}
$$

Equation (2) can then be put into the form:

$$
\begin{align*}
U a_{i}^{\dagger} U^{-1} & =a_{j}^{\dagger}(\cosh \tilde{H})_{j i}+a_{j}\left(\mathrm{e}^{\mathrm{i} \tilde{F}} \sinh \tilde{H}\right)_{j i} \tag{5.1}\\
& =a_{j}^{\dagger}(\cosh \tilde{H})_{j i}+a_{j}\left[(\sinh H) \mathrm{e}^{\mathrm{i} F}\right]_{j i} \equiv a_{i}^{\prime+} \tag{5.2}
\end{align*}
$$

It then follows that

$$
\begin{align*}
U a_{i} U^{-1} & =a_{j}(\cosh H)_{j i}+a_{j}^{\dagger}\left(\mathrm{e}^{-\mathrm{i} F} \sinh H\right)_{j i} \\
& =a_{j}(\cosh H)_{j i}+a_{j}^{\dagger}\left(\sinh \tilde{H} \mathrm{e}^{-\mathrm{i} \tilde{F}}\right)_{j i}=a_{i}^{\prime} . \tag{6}
\end{align*}
$$

Note that $\left(\mathrm{e}^{-\mathrm{i} F} \sinh H\right)$ is a symmetric matrix.

3. Multimode boson quasi-particle vacuum state generated by \boldsymbol{U}

We now seek the boson quasi-particle vacuum state $U|\overrightarrow{0}\rangle \equiv \| \overrightarrow{0}\rangle$ annihilated by a_{i}^{\prime}, where $|\overrightarrow{0}\rangle$ is the multi-boson vacuum state annihilated by $a_{i}, a_{l}|\overrightarrow{0}\rangle=0$. For this purpose, we first establish an equation satisfied by $\| 0\rangle$ by allowing a_{l} to operate on $\left.\| \overline{0}\right\rangle$

$$
\begin{equation*}
\left.a_{i} \| \overrightarrow{0}\right\rangle=U U^{-\frac{1}{2}} a_{l} U|\overrightarrow{0}\rangle \tag{7}
\end{equation*}
$$

which we then solve to get $\| \overline{0}\rangle$. As a result of (5) and (6) as well as $U^{\dagger}(G)=U(-G)$, we may express (7) as

$$
\begin{align*}
\left.a_{l} \| \overrightarrow{0}\right\rangle & =U\left[a_{j}(\cosh H)_{j i}-a_{j}^{\dagger}\left(\mathrm{e}^{-\mathrm{i} F} \sinh H\right)_{j i}\right]|\overrightarrow{0}\rangle \\
& =-U a_{j}^{\dagger}\left(\mathrm{e}^{-\mathrm{i} F} \sinh H\right)_{j i} U^{-1} U|\overrightarrow{0}\rangle \\
& \left.=-\left[a_{i}^{\dagger}\left(\cosh \tilde{H} \mathrm{e}^{-\mathrm{i} F} \sinh H\right)_{l i}+a_{t}\left(\sinh ^{2} H\right)_{l i}\right] \| \overrightarrow{0}\right\rangle . \tag{8}
\end{align*}
$$

It then follows from (4) and (8) that

$$
\begin{equation*}
\left.\left.a_{t} \| \overrightarrow{0}\right\rangle=-a_{j}^{\dagger}\left(\mathrm{e}^{-\mathrm{i} F} \tanh H\right)_{j t} \| \overrightarrow{0}\right\rangle \tag{9}
\end{equation*}
$$

which is the equation we need for $\| \overline{0}\rangle$ to obey. By noticing

$$
\begin{align*}
& {\left[a_{i}, \exp \left(-\frac{1}{2} a_{i}^{\dagger}\left(\mathrm{e}^{-\mathrm{i} F} \tanh H\right)_{i j} a_{j}^{\dagger}\right)\right]} \\
& \quad=-a_{j}^{\dagger}\left(\mathrm{e}^{-\mathrm{i} F} \tanh H\right)_{j i} \exp \left(-\frac{1}{2} a_{i}^{\dagger}\left(\mathrm{e}^{-\mathrm{i} F} \tanh H\right)_{i j} a_{j}^{\dagger}\right) \tag{10}
\end{align*}
$$

we solve equation (9) to obtain

$$
\begin{equation*}
\| \overrightarrow{0}\rangle=C \exp \left[-\frac{1}{2} a_{i}^{\dagger}\left(\mathrm{e}^{-\mathrm{i} F} \tanh H\right)_{i j} a_{j}^{\dagger}\right]|\overrightarrow{0}\rangle . \tag{11}
\end{equation*}
$$

The normalization factor C can be derived by evaluating the norm $1=\langle\overrightarrow{0} \| \mid \overrightarrow{0}\rangle=|C|^{2}\langle\overrightarrow{0}| \exp \left[-\frac{1}{2} a_{i}\left(\tanh H \mathrm{e}^{\mathrm{i} F}\right)_{i j} a_{j}\right] \exp \left[-\frac{1}{2} a_{i}^{\dagger}\left(\mathrm{e}^{-\mathrm{i} F} \tanh H\right)_{i j} a_{j}^{\dagger}\right]|\overrightarrow{0}\rangle$.
In order to put the anti-normally ordered exponential operators in (12) into normal product form so that the vacuum state expectation value can be readily obtained, we use the operator identity deduced in [7]

$$
\begin{align*}
\mathrm{e}^{a_{i} \sigma_{j} a_{j}} \mathrm{e}^{a_{i}^{\dagger} \tau_{j} a_{j}^{\dagger}}= & {[\operatorname{det}(\mathbb{0}-4 \sigma \tau)]^{-1 / 2} \exp \left\{a_{i}^{\dagger}\left[(\mathbb{1}-4 \tau \sigma)^{-1} \tau\right\}_{i j} a_{j}^{\dagger}\right\} } \\
& \times: \exp \left[a_{i}^{\dagger}(\mathbb{1}-4 \tau \sigma)_{i j}^{-1} a_{j}-a_{i}^{\dagger} a_{i}\right]: \\
& \times \exp \left\{a_{i}\left[(\mathbb{1}-4 \sigma \tau)^{-1} \sigma\right]_{i j} a_{j}\right\} \tag{13}
\end{align*}
$$

where σ and τ are both $n \times n$ symmetric matrices, and $\mathbb{1}$ is the $n \times n$ unit matrix. As a result of employing (13), from (12) we obtain, up to a phase factor,

$$
\begin{equation*}
C=[\operatorname{det}(\operatorname{sech} H)]^{1 / 2} . \tag{14}
\end{equation*}
$$

4. Normally ordered expansion of $U(G)$

We now seek the normal product form of $U(G)$. By introducing the overcompleteness relation of the boson coherent state

$$
\begin{equation*}
\int \frac{\mathrm{d}^{2} \vec{z}}{\pi}|\vec{z}\rangle\langle\vec{z}|=\int \prod_{i}\left[\frac{\mathrm{~d}^{2} z_{i}}{\pi}\right]: \exp \left[-\left(z_{i}^{*}-a_{i}^{\dagger}\right)\left(z_{i}-a_{i}\right)\right]:=1 \tag{15}
\end{equation*}
$$

where $|\vec{z}\rangle$ is defined as
$|\vec{z}\rangle \equiv\left|z_{1}, z_{2}, \ldots, z_{n}\right\rangle=\exp \left[-\frac{1}{2} z_{i}^{*} z_{i}+z_{i} a_{i}^{\dagger}\right]|\overrightarrow{0}\rangle \equiv \exp \left[-\frac{1}{2}|\vec{z}|^{2}+\vec{z} \vec{a}^{+}\right]|\overrightarrow{0}\rangle$
we can rewrite $U(G)$ as

$$
\begin{align*}
& U|\bar{z}\rangle=U \exp \left(z_{i} a_{i}^{\dagger}\right) U^{-1} U|\overrightarrow{0}\rangle \exp \left(-\frac{1}{2}\left|z_{i}\right|^{2}\right) \\
&= {[\operatorname{det}(\operatorname{sech} H)]^{1 / 2} \exp \left\{z_{i}\left[a_{j}^{\dagger}(\cosh \tilde{H})_{j i}+a_{j}\left(\sinh H \mathrm{e}^{\mathrm{i} F}\right)_{j i}\right]\right\} } \\
&\left.\times \exp \left\{-\frac{1}{2} a_{i}^{\dagger}\left(\mathrm{e}^{-\mathrm{i} F} \tanh H\right)_{i j} a_{j}^{\dagger}-\frac{1}{2}\left|z_{i}\right|^{2}\right\}| | \overline{0}\right\rangle . \tag{17}
\end{align*}
$$

In deriving (17) we have used (5) and (11). Using the Baker-Hausdorff formula and (10) we can decompose the first exponential in (17) as
$\exp \{\ldots\}=\exp \left(z_{i}(\cosh H)_{i j} a_{j}^{\dagger}\right) \exp \left(a_{j}\left(\sinh H \mathrm{e}^{\mathrm{i} F}\right)_{j i} z_{i}\right) \exp \left(\frac{1}{4} z_{i}\left(\sinh 2 H \mathrm{e}^{\mathrm{i} F}\right)_{i j} z_{j}\right)$.
Therefore, (17) becomes

$$
\begin{align*}
U|\vec{z}\rangle=[\operatorname{det}(\operatorname{sech} H))^{1 / 2} \exp \left[-\frac{1}{2}\left|z_{i}\right|^{2}+z_{i}(\operatorname{sech} H)_{i j} a_{j}^{\dagger}+\frac{1}{2} z_{i}\left(\tanh \mathrm{e}^{i F}\right) z_{j}\right. \\
\left.-\frac{1}{2} a_{i}^{\dagger}\left(\mathrm{e}^{-\mathrm{i} F} \tanh H\right)_{i j} a_{j}^{\dagger}\right]|\overrightarrow{0}\rangle . \tag{19}
\end{align*}
$$

By virtue of (19) and the IWOP technique we can further express $U(G)$ as

$$
\begin{align*}
& U=\int \frac{\mathrm{d}^{2} \tilde{z}}{\pi} U|\vec{z}\rangle\langle\tilde{z}| \\
&= {[\operatorname{det}(\operatorname{sech} H)]^{1 / 2} \int \prod_{i}\left[\frac{\mathrm{~d}^{2} z_{i}}{\pi}\right] } \\
& \times: \exp \left\{-\left|z_{i}\right|^{2}+z_{i}(\operatorname{sech} H)_{i j} a_{j}^{\dagger}+z_{i}^{*} a_{i}+\frac{1}{2} z_{i}\left(\tanh H \mathrm{e}^{\mathrm{i} F}\right)_{i j} z_{j}\right. \\
&\left.-\frac{1}{2} a_{i}^{\dagger}\left(\mathrm{e}^{-\mathrm{i} F} \tanh H\right)_{i j} a_{j}^{\dagger}-a_{i}^{\dagger} a_{i}\right\}: \tag{20}
\end{align*}
$$

In terms of the integration formula [7, 8]

$$
\begin{align*}
& \int \prod_{i=1}^{n}\left[\frac{\mathrm{~d}^{2} z_{i}}{\pi}\right] \exp \left[-\frac{1}{2}\left(\vec{z}, \vec{z}^{*}\right)\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)\binom{\vec{z}}{\vec{z}^{*}}+\left(\vec{\mu}, \vec{\nu}^{*}\right)\binom{\vec{z}}{\vec{z}^{*}}\right] \\
&=\left[\operatorname{det}\left(\begin{array}{ll}
C & D \\
A & B
\end{array}\right)\right]^{-1 / 2} \exp \left[\frac{1}{2}\left(\vec{\mu}, \vec{\nu}^{*}\right)\left(\begin{array}{ll}
C & D \\
A & B
\end{array}\right)^{-1}\binom{\vec{\nu}^{*}}{\mu}\right] \tag{21}
\end{align*}
$$

where $\bar{A}, \bar{B}, \bar{C}, \bar{D}$ are all square matrices of order $n, \tilde{B}=\bar{B}, \tilde{C}=\bar{C}$, and the method of partitioning of matrices for finding the inverse and the determinant of a matrix

$$
\begin{align*}
& \left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & A^{-1} B\left(C A^{-1} B-D\right)^{-1} \\
D^{-1} C\left(B D^{-1} C-A\right)^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right) \tag{22}\\
& \operatorname{det}\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\operatorname{det} A \operatorname{det}\left(D-C A^{-1} B\right)
\end{align*}
$$

then equation (20) finally becomes

$$
\begin{align*}
& U=[\operatorname{det}(\operatorname{sech} H)]^{1 / 2} \int \prod_{i}\left[\frac{\mathrm{~d}^{2} z_{i}}{\pi}\right]: \exp \left\{-\frac{1}{2}\left(\vec{z}, \vec{z}^{*}\right)\left(\begin{array}{cc}
-\tanh H \mathrm{e}^{\mathrm{i} F} & \mathbb{0} \\
\mathbb{1} & 0
\end{array}\right)\binom{\vec{z}}{\vec{z}^{*}}\right. \\
&\left.+\left(\vec{a}^{\dagger} \operatorname{sech} \tilde{H}, \vec{a}\right)\binom{\vec{z}}{\vec{z}^{*}}-a_{i}^{\dagger} a_{i}-\frac{1}{2} a_{i}^{\dagger}\left(\mathrm{e}^{-\mathrm{i} F} \tanh H\right)_{i j} a_{j}^{\dagger}\right\}: \\
&= {[\operatorname{det}(\operatorname{sech} H)]^{1 / 2} \exp \left[-\frac{1}{2} a_{i}^{\dagger}\left(\mathrm{e}^{-\mathrm{i} F} \tanh H\right)_{i j} a_{j}^{\dagger}\right] } \\
& \times: \exp \left[a_{i}^{\dagger}(\operatorname{sech} \tilde{H}-\mathbb{\square})_{i j} a_{j}\right]: \exp \left[\frac{1}{2} a_{i}\left(\tanh H \mathrm{e}^{\mathrm{i} F}\right)_{i j} a_{j}\right] . \tag{23}
\end{align*}
$$

By virtue of the formula

$$
\begin{equation*}
: \exp \left[a_{i}^{\dagger}\left(\mathrm{e}^{\Lambda}-\mathbb{1}\right)_{i j} a_{j}\right]: a_{j}: \exp \left[a_{i}^{\dagger}\left(\mathrm{e}^{-\Lambda}-\mathbb{D}\right)_{i j} a_{j}\right]:=\left(\mathrm{e}^{-\Lambda}\right)_{j i} a_{i} \tag{24}
\end{equation*}
$$

and $\tilde{H}^{2} \mathrm{e}^{-\mathrm{i} F}=\mathrm{e}^{-\mathrm{i} F} H^{2}$, one can check that the result (23) indeed generates the transformations (5) and (6). As a direct application of (23), following Bogolyubov [3] and Tyablikov [4] we consider the Hamiltonian [9]

$$
\mathscr{H}=a_{i}^{\dagger} L_{i j} a_{j}+\frac{1}{2}\left(a_{i}^{\dagger} M_{i j} a_{j}^{\dagger}+a_{i} M_{i j}^{\dagger} a_{j}\right)
$$

where $L=L^{\dagger}, M=\tilde{M}$. In terms of (5) and (6) one can diagonalize \mathscr{H} as $\mathscr{H}=$ $E^{(0)}+E^{(i)} a_{i}^{\prime+} a_{i}^{\prime}$, where the energies $E^{(i)}$ and the matrices H and F are determined by

$$
\begin{aligned}
& \left(E^{(i)} \delta_{l j}-L_{l j}^{*}\right)(\cosh \tilde{H})_{i j}=-\left(\sinh \tilde{H} \mathrm{e}^{-\mathrm{i} \tilde{F}}\right)_{i j} M_{j l}^{*} \\
& \left(E^{(i)} \delta_{l j}+L_{i j}\right)\left(\sinh \tilde{H} \mathrm{e}^{-\mathrm{i} \tilde{F}}\right)_{i j}=(\cosh \tilde{H})_{i j} M_{j l}
\end{aligned}
$$

which can lead us to find the energy E^{0}

$$
E^{(0)}=-E^{(i)}\left(\sinh ^{2} H\right)_{i i} .
$$

In summary, by combining and contrasting this work and the formalism of [1], we have developed the original Bogolyubov transformation to a new formalism in which the parameter is a matrix. The IWOP techniques for both boson and fermion systems have played an essential role in both [1] and the present addendum.

Note added in proof. Using IWOP, we can also directly perform the integration

$$
\begin{aligned}
&\left.\int \mathrm{d}^{n} \vec{q} \mid \mathrm{e}^{\Lambda} \vec{q}\right)\left(q^{2} \mid\left(\operatorname{det} \mathrm{e}^{\Lambda}\right)^{1 / 2}\right. \\
&= {[\operatorname{det} \operatorname{sech} \Lambda]^{1 / 2} \exp \left[\frac{1}{2} a_{i}^{\dagger}(\tanh \Lambda)_{i j} a_{j}^{\dagger}\right] } \\
& \times: \exp \left[a_{i}^{\dagger}(\operatorname{sech} \Lambda-1)_{i j} a_{j}\right]: \exp \left[-\frac{1}{2} a_{i}(\tanh \Lambda)_{i j} a_{j}\right]
\end{aligned}
$$

where Λ is a real symmetric matrix, $\mathrm{e}^{2 \Lambda}+\mathbb{\|}$ is positive definite, and $|\vec{q}\rangle$ is the n-mode coordinate eigenstate. This is a special case of (23).

References

[1] Fan Hong-yi and VanderLinde J 1990 J. Phys. A: Math. Gen. 23 L1113
[2] Fan Hong-yi and Ruan Tu-nan 1884 Sci. Sinica. A 27392
Fan Hong-yi, Zaidi H R and Klauder J R 1987 Phys. Rev. D 351831
Fan Hong-yi 1989 J. Phys. A: Math. Gen. 223423
[3] Bogolyubov N N 1968 Lectures on Quanntum Statistics vol 1 (New York: Gordon and Breach)
[4] Tyablikov S V 1967 Methods in the Quantum Theory of Magnetism (New York: Plenum)
[5] Klauder J R and Skargerstam B-S 1985 Coherent States (Singapore: World Scientific)
[6] Pease M C 1965 Methods of Matrix Algebra (New York: Academic) pp 102, 154
[7] Fan Hong-yi 1990 J. Phys. A: Math. Gen. 231833
[8] Berezin F A 1966 The Method of Second Quantization (New York: Academic)
[9] Dayydov A S 1967 Quantum Mechanics transl D ter Harr (Oxford: Pergamon) p 203

[^0]: \dagger Mailing address.

